177. Strukturaufklärung von N⁶-, 9- und 7-Acyladeninen durch ¹H- und ¹³C-NMR-Spektroskopie von Festkörpern und in Lösung

von Walter Ried^a)*, Heinz Woithe^a)¹) und Arndt Müller^b)

 ^a) Institut für Organische Chemie der Universität Frankfurt, Laboratorium Niederrad, Theodor-Stern-Kai 7, D-6000 Frankfurt am Main 70
 ^b) Fachbereich Forschung Chemie, *Degussa AG*, Postfach 1345, D-6450 Hanau 1

(11.VII.89)

Structure Determination of N⁶-, 9- and 7-Acyladenines by ¹H- and ¹³C-NMR Spectroscopy of Solids and in Solution

Adenine (1) reacts with carboxylic acid anhydrides or chlorides 2 to yield the acyladenine isomers 3–5. The isomeric structures were determined by ¹³C- and ¹H-NMR spectroscopy in solution and by solid-state ¹³C-NMR spectroscopy.

Einleitung. – Im Jahre 1888 berichtete Kossel [2] erstmals über die Herstellung von N^6 -Acetyl- und N^6 -Benzoyladenin. Die Veröffentlichungen der folgenden Jahre über Acyladenine beziehen sich meistens auf N^6 -Isomere bzw. N^6 -,9- oder N^6 ,7-diacylierte Adenine [3–18]. Darüber hinaus werden nur acht ausschliesslich am Heterocyclus acylierte Adenine beschrieben, wobei fünf Derivaten eine bestimmte Struktur zugeordnet wird [4] [5] [13] [19–21]. In der vorliegenden Arbeit wird gezeigt, dass eindeutige Strukturzuordnungen der N^6 -, 9- und 7-Acyladenin-Isomere, von denen bisher kaum NMR-Daten vorliegen [12–14] [21], mit der ¹H- bzw. ¹³C-NMR-Spektroskopie möglich sind.

Ergebnisse. – N⁶-Acyladenine 3c–e, g–i, l–o²). Die Umsetzung von Adenin (1) mit den Carbonyl-chloriden 2c–e, g, i, l, m in Pyridin in der Siedehitze [12] [15] [17] ergibt die N⁶-Acyladenine 3c–e, g, i, l, m. Die Säurechloride 2h, i reagieren in DMF/Et₃N bei Raumtemperatur zu 3h, i, und 2-(Chlorothio)benzoyl-chlorid 2k führt in DMF bei Raumtemperatur ohne Katalysator zum Benzisothiazolon-Addukt 3k. Die Reaktion von 1 mit den Carbonsäure-anhydriden 2n, o in Xylol nach *Methode 1B* von *Baizer et al.* [10] ergibt 3n, o.

Isomerengemische 3c/4c/5c und 3f/4f/5f der N⁶-, 9- und 7-Acyladenine. Die Reaktion der Carbonyl-chloride 2c, f in DMF/Et₃N bei Raumtemperatur führt zu den Isomerengemischen 3c/4c/5c bzw. 3f/4f/5f. Die N⁶-Isomeren 3c, f werden durch fraktionierte Kristallisation von den Gemischen der 9- und 7-Isomere 4c/5c bzw. 4f/5f abgetrennt. Eine Trennung der 9- und 7-Isomeren gelingt wegen der Labilität der Acyl-Reste nicht [4] [5].

¹) Teil der geplanten Dissertation von H. W. [1].

²) Herstellung und ¹H-NMR-Spektren in DMSO von 3c [13], 3d [12], 3g,i, 3n [17] und 3o sind Teil der Diplomarbeit von H. W. [22]. Die Synthese von 3l ist beschrieben [10] [11] [15] [16].

¹*H-NMR-Spektroskopie der* N⁶-*Acyladenine*. Die Mehrzahl der hergestellten N⁶-, 9und 7-Acyladenine lassen sich durch ihre ¹*H*-NMR-Spektren in (D₆)DMSO-Lösung identifizieren. Eine besondere Bedeutung kommt hierbei den Differenzen $\Delta\delta$ der chemischen Verschiebungen der Protonen H–C(2) und H–C(8) zu. Die 7-Acyl-Derivate zeigen die kleinsten, die N⁶-Isomere mittlere und 9-Acyladenine die grössten Differenzwerte $\Delta\delta$. Auf die Bedeutung der $\Delta\delta$ -Werte bei der Strukturbestimmung von N-substituierten Purin-Isomeren wurde von verschiedenen Autoren hingewiesen [21] [23]. Die ¹H-NMRspektroskopischen Daten der N⁶-Isomere in (D₆)DMSO sind in *Tab. 1* aufgeführt. Die Stabilität der N⁶-Acyladenine lässt auch Aufnahmen von ¹H-NMR-Spektren in CF₃COOD (*Tab. 2*) zu.

In (D₆)DMSO liegen die Signale von H–C(2) und H–C(8), deren Zuordnung entsprechend der Literatur erfolgt [21], im Mittel bei 8,73 bzw. 8,50 ppm. Daraus ergeben sich für 3c-f,h,l,n,o Differenzwerte $\Lambda\delta$ von 0,21–0,24 ppm (vgl. *Tab. 1* und 6). Der $\Lambda\delta$ -Wert verkleinert sich bei den Derivaten 3g,m, die am Aromaten in 2-Stellung zur Acyl-Gruppe einen Chloro-Substituenten tragen, und beim 3,5-Dinitrobenzoyl-Derivat 3i auf 0,15–0,17 ppm. Charakteristisch für N⁶-Acyladenine ist auch die mittlere chemische Verschiebung der Protonen H–N(9/7) bzw. H–N⁶ von 12,35 bzw. 11,67 ppm. Bei 3o ist eine Aufspaltung der (N–H)-Resonanzlinien in zwei Signalgruppen im Bereich von 11,4 bis 13,6 ppm sichtbar, die sich an den übrigen Signalen nicht zeigt.

In CF₃COOD liegen die Resonanzlinien von H–C(2) und H–C(8) bei *ca.* 9,37 bzw. 9,23 ppm. Die $\Delta\delta$ -Werte H–C(2) *vs.* H–C(8) betragen für **3c–f**, **h–l** 0,12–0,16 ppm. Im Vergleich dazu sind die $\Delta\delta$ -Werte von **3g**, **m** sowohl in (D₆)DMSO als auch in CF₃COOD mit $\Delta\delta = 0,06$ bzw. 0,07 ppm kleiner. Die Nicotinoyl- und Isonicotinoyl-Verbindungen **3n**, **o** zeigen in CF₃COOD gegenüber den (D₆)DMSO-Spektren kaum veränderte Verschiebungsdifferenzen von 0,20 bzw. 0,23 ppm (*Tab.6*).

9-Acyladenine 4a, g, j, m, p, q und 7-Benzoyladenin 5b. Die Strukturen des aus 1 und 2a nach Chheda et al. [21] hergestellten 9-Acetyladenins (4a) und des aus 1 und 2b nach Altman und Ben-Ishai [19] [24] synthetisierten 7-Benzoyladenins (5b) werden durch die ¹H-

		140.1. 11-1	ddl ol (uaind-v WA	unautor- VI Tab (Lui	שח ח-ו 'ו-סר א	$OCM(D^{(0)})$ in SC non
	H-N(9/7)	H-N ⁶	H-C(2)	H-C(8)	$d\delta$	arom. H
સુ	12,45 (x, 1 H)	11,92 (x, 1 H)	8,76 (s, 1 H)	8,55 (s, 1 H)	0,21	8,40 (d , 2 H), $8,31$ (d , 2 H)
34	12,40 (+, 1 H)	11,60 (s, 1 H)	8,75 (s, 1 H)	8,52 (s, 1 H)	0,23	8,13 (d, 2 H), 7,65 (d, 2 H)
3e	12,45 (x, 1 H)	11,57 (s, 1 H)	8,76 (s, 1 H)	8,54 (s, 1 H)	0,22	8,24 (d, 2 H), 7,89 (d, 2 H), 7,80 (d, 2 H), 7,50 (m, 3 H)
3	11,90 (+, 1 H)	11,90 (+, 1 H)	8,75 (s, 1 H)	8,53 (s, 1 H)	0,22	7,95 (m, 2 H), 7,47 (m, 2 H)
3g	12,40 (x, 1 H)	11,80 (x, 1 H)	8,70 (s, 1 H)	8,53 (s, 1 H)	0,17	7,72 (d, 1 H), 7,58 (m, *, 2 H), 7,51 (m, *, 1 H)
Зћ	12,40 (x, 1 H)	11,68 (x, 1 H)	8,75 (s, 1 H)	8,53 (s, 1 H)	0,22	8,17 (s, 1 H), 8,07 (d, 1 H), 7,75 (d, 1 H), 7,61 (t, 1 H)
3	12,54 (x, 1 H)	12,54 (x, 1 H)	8,75 (s, 1 H)	8,58 (s, 1 H)	0,17	9,27 (s, 2 H), 9,03 (m, 1 H)
ЗĶ	12,68 (s, 1 H)		8,83 (s, 1 H)	8,56 (s, 1 H)	0,27	8,08 (d, 1 H), 8,04 (d, 1 H), 7,84 (t, 1 H), 7,55 (t, 1 H)
31	12,45 (x, 1 H)	11,41 (s, 1 H)	8,74 (s, 1 H)	8,52 (s, 1 H)	0,22	8,07 (d, 1 H), 7,76 (d, 1 H), 6,79 (m, 1 H)
3m	12,55 (x, 1 H)	11,65 (+, 1 H)	8,69 (s, 1 H)	8,54 (s, 1 H)	0,15	8,18 (d, 1 H), 7,98 (d, 1 H), 7,65 (m, 2 H)
3л	12,15 (+, 1 H)	12,15 (+, 1 H)	8,69 (s, 1 H)	8,45 (s, 1 H)	0,24	9,23 (<i>m</i> , 1 H), 8,80 (<i>m</i> , 1 H), 8,43 (<i>m</i> , *, 1 H), 7,59 (<i>m</i> , 1 H)
30	13,55 (x, 0,2 H)	11,86(s, 0.8 H)	8,77(s, 1 H)	8,55 (s, 1 H)	0,22	8,84~(d, 2 H), 8,00~(d, 2 H)
	12,45 (s, 0,8 H)	11,42 (x, 0,2 H)				
<u>م ہ</u>	x = breit; + = schr breit;	* = überlagert.				
~	2,42 (3, 3 11, 2113-6114).					

Tab. 1. ¹*H-NMR-Daten*^a) (δ [ppm]) der N⁶-*Acyladenine* **3c-i**, **J-0** und von **3k** in (D_6) DMSO

	H-C(2)	H-C(8)	Δδ	arom. H
3c	9,38 (s, 1 H)	9,23 (s, 1 H)	0,15	8,55 (d, 2 H), 8,42 (d, 2 H)
3d	9,32 (s, 1 H)	9,19 (s, 1 H)	0,13	8,12 (<i>d</i> , 2 H), 7,67 (<i>d</i> , 2 H)
3e	9,33 (s, 1 H)	9,20 (s, 1 H)	0,13	8,23 (d, 2 H), 7,94 (d, 2 H), 7,71 (d, 2 H), 7,48 (m, 3 H)
3 f ^a)	9,33 (s, 1 H)	9,20 (s, 1 H)	0,13	7,95 (m, 2 H), 7,70 (d, 1 H), 7,58 (m, 1 H)
3g	9,28 (s, 1 H)	9,22 (s, 1 H)	0,06	7,89 (m, 1 H), 7,67 (m, 2 H) ^b), 7,59 (m, 1 H) ^b)
3h	9,32 (s, 1 H)	9,20 (s, 1 H)	0,12	8,14 (s, 1 H), 8,05 (d, 1 H), 7,81 (d, 1 H), 7,63 (t, 1 H)
3i	9,41 (s, 1 H)	9,25 (s, 1 H)	0,16	9,47 (m, 3 H)
3k	9,43 (s, 1 H)	9,31 (s, 1 H)	0,12	8,21 (d, 1 H), 7,99 (t, 1 H), 7,80 (d, 1 H), 7,68 (t, 1 H)
31	9,35 (s, 1 H)	9,19 (s, 1 H)	0,16	7,91 (d, 1 H), 7,88 (d, 1 H), 6,87 (m, 1 H)
3m	9,33 (s, 1 H)	9,26 (s, 1 H)	0,07	8,12 (d, 1 H), 7,98 (d, 1 H), 7,70 (m, 2 H)
3n	9,42 (s, 1 H)	9,22 (s, 1 H)	0,20	9,78 (s, 1 H), 9,49 (d, 1 H), 9,24 (d, 1 H) ^b), 8,46 (m, 1 H)
30	9,46 (s, 1 H)	9,23 (s, 1 H)	0,23	$9,24 (d, 2 H)^{b}$, $8,88 (d, 2 H)$
a) b)	2,54 (s, 3 H, CH_3C_6 Überlagert.	H ₄).		

Tab. 2. ¹H-NMR-Daten (δ [ppm]) der N⁶-Acyladenine **3c–i**, **l–o** sowie **3k** in CF₃COOD

und ¹³C-NMR-Spektroskopie bestätigt. Die Reaktionen von 1 mit 2g, j, m in DMF/Et₃N bei Raumtemperatur führen zu den 9-Isomeren 4g, j, m. Die bifunktionellen Säurechloride 2p, q reagieren unter diesen Bedingungen zu den 9,9'-Bisadenyl-Verbindungen 4p, q.

¹*H-NMR-Spektroskopie der 9- und 7-Acyladenine*. Die ¹*H-NMR-Spektren der 9-Acyladenine in* (D_6)DMSO (*Tab. 3*) unterscheiden sich deutlich von denen der N^6 -Isomeren. Die Daten der 7-Acyladenine sind in *Tab. 4* zusammengefasst. Da sich die 9- und 7-Acyladenine in CF₃COOD zersetzen, ist die Aufnahme von ¹*H-NMR-Spektren unter diesen Bedingungen nicht möglich.*

In (D₆)DMSO liegen die Signale von H–C(8) und H–C(2) der aromatisch substituierten Verbindungen **4b–g, 1, m, p** im Mittel bei 8,62 bzw. 8,14 ppm. Für **4b–f, 1, p** ergeben sich daraus $\Delta\delta$ -Werte von 0,40–0,54 ppm. Während die $\Delta\delta$ -Werte von **3g, m** in (D₆)DMSO kleiner sind als die der übrigen N⁶-Acyladenine (s. *Tab. 1*), haben die entsprechenden 9-Acyl-Verbindungen **4g, m** mit 0,59 bzw. 0,63 ppm höhere $\Delta\delta$ -Werte als alle anderen 9-Isomeren (*Tab. 3* und δ). Die 9-Isomeren **4a, q** mit aliphatischen Resten R (*Schema 1* und 2) sowie die Cinnamoyl-Verbindung **4j** zeigen H–C(8) und H–C(2) im Mittel bei 8,69 bzw. 8,32 ppm und besitzen kleinere $\Delta\delta$ -Werte (0,34–0,40 ppm) als die aromatisch substituierten 9-Isomeren. Charakteristisch ist die chemische Verschiebung von H–N⁶ der 9-Acyladenine, die im Mittel bei 7,54 ppm liegt.

In den ¹H-NMR-Spektren der 7-Acyladenine **5b–f** in (D₆)DMSO erscheinen H–C(8) und H–C(2) im Mittel bei 8,58 bzw. 8,40 ppm. Die Resonanzlinie von H–N⁶ von **5b** liegt bei 7,3 ppm. Bei den übrigen 7-Acyladeninen lassen sich die Signale der NH-Protonen nicht beobachten.

	HC(8)	H-C(2)	$\delta \delta$	arom. H	H-N ⁶	Andere
4 a ^a)	8,62 (s, 1 H)	8,28 (s, 1 H)	0,34		7,52 (s, 2 H)	2,88 (s, 3 H, CH ₃)
4 b ^b) ^c)	8,51 (s, 1 H)	8,11 (s, 1 H)	0,40	7,86 (m, 2 H), 7,75 (m, 1 H), 7,58 (m, 2 H)	7,45 (s, 2 H)	i
4c ^b)	8,63 (s, 1 H)	8,09 (s, 1 H)	0,54	$8,38 \ (m, \ 2 \ H), \ 8,11 \ (m, \ 2 \ H)$	7,59 (s, 2 H)	
4d ^b)	8,56 (s, 1 H)	8,11 (s, 1 H)	0,45	7,88 (m, 2 H), 7,65 (m, 2 H)	7,54 (s, 2 H)	
4e ^b)	8,58 (s, 1 H)	8,13 (s, 1 H)	0,45	$7,93 (m, 4 \text{ H}), 7,81 (m, 2 \text{ H}), 7,52 (m, 3 \text{ H})^{d}$	7,54 (s, 2 H)	
4f ⁰)	8,52 (s, 1 H)	8,12 (s, 1 H)	0,40	7,76 (d, 2 H), 7,39 (d, 2 H)	7,52 (s, 2 H)	$2,44$ (s, 3 H, $CH_3C_6H_4$)
4g	8,67 (s, 1 H)	8,04 (s, 1 H)	0,63	7,76 (d, 1 H), 7,64 (m, 2 H), 7,56 (m, 1 H) ^d)	7,58 (s, 2 H)	
4j	8,76 (s, 1 H)	8,36 (s, 1 H)	0,40	$7,83 \ (m, \ 2 \ H), \ 7,54 \ (m, \ 3 \ H)$	7,59 (s, 2 H)	8,52, 8,10 (2d, je 1 H, CH=CH)
4 1 ^b)	8,64 (s, 1 H)	8,24 (s, 1 H)	0,40	8,25 (d, 1 H), 7,78 (m, 1 H), 6,90 (m, 1 H)	7,55 (s, 2 H)	
4m	8,72 (s, I H)	8,13 (s, 1 H)	0,59	8,25 (d, 1 H), 7,97 (m, 1 H), 7,69 (m, 2 H)	7,62 (s, 2 H)	
4p ^e)	8,60 (s, 2 H)	8,13 (s, 2 H)	0,47	8,01 (s, 4 H)	7,56 (s, 4 H)	
4q°) ^ľ)	8,66 (s, 2 H)	8,32 (s, 2 H)	0,34		7,58 (s, 4 H)	$3,90 (s, 4 H, CH_2 CH_2)$
$\int_{0}^{a} \int_{0}^{b} \frac{1}{2} $: Die <i>δ</i> -Werte eini f,l im Gemisch mi 40°. srlagert. ke Zersetzung. verlöslich, <i>T</i> = 60.	ger Messungen zei, it 5b-f,1. -100°.	gen eventuel	durch andere Geräteeichung eine konstante Differenz	von ca. 0,3-0,4 ppm.	

Tab. 3. $^{l}H\text{-}NMR\text{-}Daten$ (§ [ppm]) der 9-Acyladenine 4a–g, j, l, m, p, q in $(D_{6})DMSO$

Helvetica Chimica Acta – Vol. 72 (1989)

	H-C(8)	HC(2)	$\Delta\delta$	arom. H	HN ⁶
5b	8,53 (s, 1 H)	8,39 (s, 1 H)	0,14	7,94 (m, 2 H), 7,79 (m, 1 H), 7,65 (m, 2 H)	7.3 ^a)
5c ^b)	8,54 (s, 1 H)	8,41 (s, 1 H)	0,13	8,45 (m, 2 H), 8,33 (m, 2 H)	ົ
5d ^b)	8,56 (s, 1 H)	8,39 (s, 1 H)	0,17	7,95 (d, 2 H), 7,72 (d, 2 H)	ń
5e ^b)	8,63 (s, 1 H)	8,40 (s, 1 H)	0,23	$8,09 (m, 4 H)^d$, $8,00 (m, 2 H)^d$, ^d) (m, 3 H)	Ś
5 f ^b) ^e)	8,54 (s, 1 H)	8,39 (s, 1 H)	0,15	7,84 (<i>d</i> , 2 H), 7,46 (<i>d</i> , 2 H)	°)
^a) Bi	eit.				
^b) 5c	–f im Gemisch mit	4c-f.			
^c) N	cht beobachtet.				
d) Ü	berlagert.				

Tab. 4. ¹*H*-*NMR*-*Daten* (δ [ppm]) *der* 7-*Acyladenine* **5b–f** *in* (D_6)*DMSO*

Isomerengemische 4b/5b, 4d/5d, 4e/5e und 4l/5l der 9- und 7-Acyladenine. Nach der Vorschrift von Altman und Ben-Ishai [19] [24] lässt sich aus 1 und 2b 9-Benzoyladenin (4b) herstellen: 4b wird als Gemisch mit 7-Benzoyladenin (5b) im Verhältnis 4:1 isoliert. Bei der Umsetzung von Adenin (1) mit den Carbonyl-chloriden 2d, e, l in DMF/Et₃N bei Raumtemperatur erhält man die Gemische 4d/5d, 4e/5e bzw. 4l/5l der 9- und 7-Isomeren. Die eindeutige Unterscheidung der 9- und 7-Isomeren im ¹H-NMR-Spektrum (*Tab. 3* und 4) erlaubt die Angabe des Verhältnisses von 10:1 der 9- und 7-Isomeren im Fall von 4d/5d und 4e/5e. Die strukturelle Zuordnung der 9- und 7-Acyladenin-Isomeren erfolgt durch die ¹³C-NMR-Spektroskopie (*Tab. 5*).

¹³C-NMR-Spektroskopie der N⁶-, 9- und 7-Acyladenin-Isomeren. Die den 7- und 9-Acyladeninen aufgrund der ¹H-NMR-Spektren zugeordneten Strukturen werden durch die ¹³C-NMR-Spektren bestätigt (*Tab. 5*). Die Spektren der 9-Acyladenine **4a, b, j, l** in (D₆)DMSO zeigen grosse Ähnlichkeit mit denen von 9-Methyladenin bzw. 9-(β -D-Ribofuranosyl)adenin [25]. Charakteristisch für diese Verbindungen ist die Lage des C(5)-Signals bei *ca.* 120 ppm (9-Methyladenin: 118,7 ppm [25]; **4b:** 119,1 ppm). Wegen der Instabilität bzw. Schwerlöslichkeit von **4p, q** in (D₆)DMSO haben wir ¹³C-NMR-Festkörperspektren aufgenommen. Das Festkörperspektrum von **4a** zeigt gute Übereinstimmung mit dem in (D₆)DMSO gemessenen Spektrum. Aufgrund der in den Festkörperspektren grösseren Linienbreite sind jedoch die C(6)- und C(2)- bzw. C(2)- und C(4)-Signale nicht einzeln aufgelöst (*Tab. 5*) [26].

Die ¹³C-Signale der 7-Acyladenine **5b**, l korrelieren sehr gut mit denen von 7-Methyladenin bzw. 7-(β -D-Ribofuranosyl)adenin [25]. Die C(5)-Signale der 7-Isomeren liegen bei *ca*. 110 ppm (7-Methyladenin: 111,8 ppm [25]; **5b**: 109,0 ppm).

Stellvertretend für die N⁶-Isomeren, die durch die ¹H-NMR-Spektroskopie identifiziert werden können, ist das ¹³C-NMR-Spektrum von **3d** angeführt. Wegen der Schwerlöslichkeit von **3d** in (D₆)DMSO und aufgrund von Signalverbreiterungen haben die Resonanzlinien der quartären C-Atome auch nach 16 h Messzeit nur geringe Intensität.

Diskussion. – Bei der Umsetzung von Adenin mit Carbonyl-chloriden in Pyridin unter Siedetemperatur werden ausschliesslich N^6 -Acyladenine erhalten. Führt man die Reaktion dagegen bei Raumtemperatur in DMF unter Zusatz von Et₃N durch, sind die Ergebnisse unterschiedlich. Während bei der Umsetzung von 3-Chloro- und 3,5-Dinitrobenzoyl-chlorid auch N^6 -Isomere entstehen, hat die Reaktion der eingesetzten 2- bzw.

e)

2,46 (s, 3 H, CH₃C₆H₄).

	Tab. 5.	¹³ C-NMR-Da	tten (ð [ppm])	des N ⁶ -Acylaa	lenins 3d und der	9- und 7-Acyla	denine 4a, b, j, l, p	, q bzw. 5b, l		
	3d (D ₆)DMSO	4a FK ^b)	$\frac{4p}{FK^b}$	4 q FK ^b)	4a (D ₆)DMSO	4b ^a) (D ₆)DMSO	4j (D ₆)DMSO	5b ^a) (D ₆)DMSO	4l ^a) (D ₆)DMSO	5I ^a) (D ₆)DMSO
C=0	165,57	171,3	169,3	170,9	168,22	166,18	162,65	167,35	154,20	155,15
Adenyi-C C(6)	145,0°) ^d)	155,0°)	154,9	156,9 ^e)	156,27	156,33	156,55	152,25	156,51	152,25
C(2)	151,10 121 250dy	155,0°)	148,2 ^e) 140 2 ^e)	156,9°)	153,75	153,74	153,99 140 70	154,89	154,01 140 40	154,98 161 1 ^d)
C(8)	145.83	14/,/ 138.7	1 1 0,2) 137,2	143,5	138,28	140,24	139,05	147,73	140,06	147,07
C(5)	115,3 ^d)	118,9	116,5	120,2	119,43	119,10	119,85	10,001	119,02	$109,8^{d}$
Aryl-C C(A) (C(S))ĥ	137 54		137 3			131 73	131 50	131 53	150 33	149 5
C(1) ($C(2)$)	131.71		132.3			133,98	134,20	133,69	145,00	144,77
C(2)/C(6) (C(3)) ^f	130,51		129,0			128,45	128,92	128,82	124,45	124,20
C(3)/C(5) (C(4)) ^f)	128,58		129,0			130,45	129,35	130,46	113,37	113,54
Aliphat. C CH=CH							147,95, 118,38			
CH ₃ oder CH ₂ CH ₂		26,1		33,7	24,67					
 a) 4b und 4l im Get b) FK = Festkinge c) Zuordnung C(6), d) Verbreitert. e) Signale nicht ein. 	nisch mit 5b bzw. t. C(4) eventuell ur celn aufgelöst.	51. ngekehrt.		2 2 2 2						
¹) Atome in Klamn	iern betretten 41 t	10 5I.								

Helvetica Chimica Acta – Vol. 72 (1989)

1603

	Isomer	Lsgm.	H-C(2)	H-C(8)	$\Delta\delta$
5b-f	7-	(D ₆)DMSO	8,39-8,41	8,53-8,63	0,13-0,23
3g,m,i	N ⁶ -	(D ₆)DMSO	8,69-8,75	8,538,58	0,15-0,17
3c-f, h, l, n, o	N ⁶ -	(D ₆)DMSO	8,69-8,77	8,45-8,55	0,21-0,24
3k Benzisothiazol	N ⁶ -	(D ₆)DMSO	8,83	8,56	0,27
4a, j, q	9-	(D ₆)DMSO	8,28-8,36	8,62-8,76	0,34-0,40
4bf, i, p	9-	(D ₆)DMSO	8,09-8,24	8,518,64	0,40-0,54
4g,m	9-	(D ₆)DMSO	8,04, 8,13	8,67, 8,72	0,59, 0.63
3g,m	N ⁶ -	CF ₃ COOD	9,28, 9,33	9,22, 9,26	0,06, 0,07
3k Benzisothiazol	N ⁶ -	CF ₃ COOD	9,43	9,31	0,12
3c-f, h-l	N^{6} -	CF ₃ COOD	9,32-9,41	9,19-9,25	0,12-0,16
3n, o	N^{6} -	CF ₃ COOD	9,42, 9,46	9,22, 9,23	0,20, 0,23
3с-о	N ⁶ -	(D ₆)DMSO	N-H:	12,15-13,55; 11,41-11,92	
4a—g, j, l, m, p, q	9-	(D ₆)DMSO	N-H:	7,45–7,62	

Tab. 6. H-C(8)-, H-C(2)- und NH-Resonanzen (δ [ppm]) der N⁶-, 9- und 7-Acyladenine

4-substituierten Benzoyl-chloride die Entstehung von 9-Acyladeninen bzw. Gemischen aus 9- und 7-Isomeren oder N^6 -, 9- und 7-Isomeren zur Folge.

Die verschiedenen, an N^6 , N(7) und N(9) acylierten Adenine können mit Hilfe ihrer ¹H- und ¹³C-NMR-Spektren zweifelsfrei identifiziert werden, wobei insbesondere die Lage der H-C(2)- und H-C(8)-Signale im ¹H-NMR-Spektrum, die Differenz $\Delta\delta$ der chemischen Verschiebungen von H-C(2) und H-C(8), die Lage und Anzahl der NH-Signale im ¹H-NMR-Spektrum und spezifische chemische Verschiebungen im ¹³C-NMR-Spektrum relevant sind.

Die chemischen Verschiebungen von NH, H–C(2) und H–C(8) aller in dieser Arbeit diskutierten Purin-Isomere sind in *Tab.6* zusammengefasst. Während die N^6 -Isomere, die mit 0,21–0,24 ppm meist mittlere $\Delta\delta$ -Werte aufweisen, anhand ihrer charakteristischen NH-Verschiebungen (> 11 ppm) erkannt werden, gelingt die Unterscheidung der 7- und 9-Isomere insbesondere anhand ihrer H–C(2)-Verschiebungen und der $\Delta\delta$ -Werte. Bei 9-Acyladeninen liegt H–C(2) im Mittel am weitesten bei hohem Feld (8,14 ppm), und die $\Delta\delta$ -Werte sind hier mit 0,34–0,63 ppm am grössten. Dagegen zeigen die 7-Acyladenine mit 0,13–0,23 ppm die kleinsten $\Delta\delta$ -Werte (*Tab.6*).

Die ¹³C-NMR-Spektroskopie ermöglicht insbesondere die Unterscheidung der 7- und 9-Isomere anhand der Lage ihrer C(5)-Signale, aber auch durch die chemischen Verschiebungen von C(4) und C(8) (vgl. *Tab.5*). Mit Hilfe der Festkörper-NMR-Spektroskopie sind diese strukturellen Daten auch dann zugänglich, wenn aufgrund von Schwerlöslichkeit oder Instabilität der Verbindungen keine Spektren in Lösung erhalten werden können.

Wir danken der *Degussa AG (Hermann-Schlosser-Stiftung)* und der *Hoechst AG (Studienstiftung)* für die Gewährung von Stipendien sowie die Bereitstellung von Chemikalien. Unser Dank gilt auch Frau Dr. J. Altman, The Weizmann Institute of Science, Rehovot, Israel, für die Übersendung ihrer Dissertation sowie Herrn Dr. W. Maier, BASF AG, für die computergestützte Berechnung von ¹³C-NMR-Spektren.

Experimenteller Teil

1. Allgemeines. Alle Lsg. sind absolut bzw. pro analysi. Schmp.: Apparat der Fa. Gallenkamp bzw. Electrothermal, unkorrigiert. IR-Spektren (KBr): Perkin-Elmer Modell 117 bzw. 398; Angaben in cm⁻¹. ¹H- und ¹³C-NMR-Spektren: Bruker AM 250 (250 MHz für Protonen), WH 270 (270 MHz) bzw. AM 300 (300 MHz); TMS innerer Standard; ¹³C: DMSO als sekundärer innerer Standard (39,50 ± 0,1 ppm); alle δ -Werte in ppm. ¹³C-NMR-Festkörperspektren: Bruker AM 250 mit Zusatzeinheit für Festkörperspektroskopie, CPMAS-Experiment ('cross polarization magic angle spinning'), Messfrequenz 62,9 MHz, spektrale Breite ca. 20 kHz, Spinnerfrequenz ca. 5 kHz, $\pi/2$ -Puls für ¹H in der Regel 6,1 µs, Kontaktzeit 5 ms, Aquisitionszeit 0,080–0,102 s, Relaxationsdelay 5 s. Elementaranalysen: Carlo Erba Elemental Analyzer 1104 bzw. Heraeus CHN Rapid.

2. Allgemeine Vorschrift zur Herstellung der N⁶-Acyladenine 3c-e, g, i, 1, m. Es werden 5 mmol (0,67 g) Adenin (1) mit je 5 mmol 2c-e, g, i, 1, m in 40 ml (3c-e, g, i), 30 ml (3l) bzw. 20 ml (3m) Pyridin unter Rückfluss (3c: 24 h; 3d: 12 h; 3e: 10 h; 3g: 16 h; 3i: 3 h; 3m: 1 h Rückfluss/2 d RT.) bzw. bei 130° Ölbadtemp. (3l: 5 h) erhitzt. Ist das Produkt nach dem Abkühlen nicht aus der Lsg. ausgefallen, werden nicht umgesetztes 1 oder Verunreinigungen abfiltriert. Kristallisiert das Produkt danach nicht, wird die Lsg. bis zur beginnenden Trübung eingeengt oder in H₂O gegossen. Der Niederschlag wird abfiltriert, mit H₂O, danach mit Et₂O digeriert und aus DMF oder EtOH (3c, d, g, i), MeCN (3l) oder Diethylenglycol-dimethylether (3m) umkristallisiert. Das Rohprodukt von 3e wird mit Et₂O und dann mit Toluol ausgekocht. Das unlösliche Produkt wird abfiltriert, mit Et₂O gewaschen und analysenrein erhalten.

4-Nitro-N-(9H-purin-6-yl)benzamid (3c): 0,90 g (63%) farbloses Pulver. Schmp. 350° (Zers.; [13]: 360°). IR: 3390m, 3360s, 3180m, 3120m, 3090m, 3040w, 2960m (br., NH, CH), 1670s (C=O), 1615m, 1595s (C=N, C=C). Anal. ber. für C₁₂H₈N₆O₃ (284,2): C 50,71, H 2,84, N 29,57; gef.: C 50,89, H 2,82, N 29,64.

4-Chloro- N-(9H-purin-6-yl)benzamid (3d): 0,90 g (66%) farbloses Pulver. Schmp. 311–313° ([12]: 305–307°). IR: 3320m, 3190m, 3100m, 3080m, 3040w, 2960w (br., NH, CH), 1670s (C=0), 1610m, 1590s (C=N, C=C). Anal. ber. für C₁₂H₈ClN₅O (273,7): C 52,66, H 2,95, N 25,59; gef.: C 52,74, H 2,98, N 25,34.

N-(9H-Purin-6-yl)biphenyl-4-carboxamid (**3e**): 0,99 g (63%) farbloses Pulver. Schmp. 250–252°. IR: 3300s, 3190m, 3080m, 3020w, 2980w (br., NH, CH), 1670s (C=O), 1600s (C=N, C=C). Anal. ber. für C₁₈H₁₃N₅O (315,3): C 68,56, H 4,16, N 22,21; gef.: C 68,49, H 4,23, N 22,35.

2-Chloro- N-(9H-purin-6-yl)benzamid (**3g**): 0,63 g (46 %) farbloses Pulver. Schmp. 210°. IR: 3230*m*, 3170 (sh), 3080*m*, 3000*w*, 2940*m*, 2800*m* (br., NH, CH), 1685*s* (C=O), 1620*m*, 1585*s* (C=N, C=C). Anal. ber. für C₁₂H₈ClN₅O (273,7): C 52,66, H 2,95, N 25,59; gef.: C 52,93, H 3,08, N 25,66.

3,5-Dinitro-N-(9H-purin-6-yl)benzamid (**3i**): 0,64 g (39%) hellgelbes Pulver. Schmp. 310–312°. IR: 3350s, 3330s, 3170m, 3100m, 3080s, 3000w, 2940w, 2800 (sh) (br., NH, CH), 1680s (C=O), 1615m, 1590w (C=N, C=C). Anal. ber. für C₁₂H₇N₇O₅ (329,2): C 43,78, H 2,14, N 29,78; gef.: C 43,78, H 2,21, N 29,57.

N-(9H-Purin-6-yl)furan-2-carboxamid (**3**1): 1,14 g (76%) gelbe Kristalle. Schmp. 216–218° ([16]: 216–217°). IR: 3380m, 3290m, 3210m, 3120s, 3050 (sh), 2800w (br., NH, CH), 1690s (C=O), 1620m, 1585s (C=N, C=C). Anal. ber. für C₁₀H₇N₅O₂ (299,2): C 52,40, H 3,08, N 30,56; gef.: C 52,18, H 3,17, N 30,77.

3-Chloro- N-(9H-*purin-6-yl*)*benzo*[b]*thiophen-2-carboxamid* (**3m**): 0,75 g (41 %) gelbes Pulver. Schmp. 262–263°. IR : 3420 (sh), 3330s, 3190*m*, 3070*w* (br., NH, CH), 1670*s* (C=O), 1620*m*, 1585*m* (C=N, C=C). Anal. ber. für C₁₄H₈ClN₅OS (329,8) × 0,25 mol Diethylenglycol-dimethylether C₆H₁₄O₃ (363,3): C 51,24, H 3,19, N 19,28; gef.: C 51,13, H 3,16, N 19,46.

3. N⁶-Acyladenine **3n, o.** N-(9H-Purin-6-yl)nicotinamid (= N-(9H-Purin-6-yl)pyridin-3-carboxamid; **3n**): 0,75 g (84%) farblose Kristalle. Schmp. 309–311° ([17]: 308°). IR: 3320m, 3180m, 3100m, 3070m, 3030w, 3000w, 2970 (sh) (br., NH, CH), 1685s (C=O), 1610m, 1590s (C=N, C=C). Anal. ber. für C₁₁H₈N₆O (240,2): C 54,99, H 3,36, N 34,99; gef.: C 54,73, H 3,60, N 34,71.

N-(9H-Purin-6-yl) isonicotinamid (= N-(9H-Purin-6-yl)pyridin-4-carboxamid; **30**): 0,71 g (80%) farbloses Pulver. Schmp. 330°. IR: 3180s, 3100s, 3050w, 2960 (sh) (br., NH, CH), 1690s (C=O), 1610m (C=N, C=C). Anal. ber. für C₁₁H₈N₆O (240,2): C 54,99, H 3,36, N 34,99; gef.: C 54,82, H 3,20, N 34,74.

4. Allgemeine Vorschrift zur Herstellung von 3h, i, k und 4g, j, m, p, q sowie der Isomerengemische 3c/4c/5c, 3f/4f/5f, 4d/5d, 4e/5e und 4l/5l. Wenn nicht anders angegeben, werden 5 mmol (0,68 g) 1 mit 5 mmol Carbonylchlorid 2c-m, p, q und 5 mmol (0,51 g) Et_3N (nicht bei 3k) in 40 ml DMF bei RT. die angegebene Zeit gerührt. Danach wird der Niederschlag aus Rohprodukt und/oder $Et_3N \cdot HCl$ abfiltriert. Weitere Fraktionen können durch Zugabe von 60 ml Et_2O (3i, 4p) und durch Einengen des Filtrats auf 10 ml erhalten werden (3c/4c/5c, 3f/4f/5f, 3h, i, 4g, p). Tritt nach dem Einengen kein Niederschlag auf, kann mit 90 ml Et_2O eine Fällung erreicht werden (3i, 4g, p). Weiteres Rohprodukt kann auch durch Stehenlassen des Filtrats (4l/5l) oder Abdestillieren der Lsg. und Digerieren des erhaltenen Öls mit CHCl₃ kristallisiert werden (**4g**, **j**). Die abfiltrierten Niederschläge werden mit H_2O und dann mit Et_2O digeriert.

Trennung der N⁶-Isomere 3c, f von den 9- und 7-Isomerengemischen 4c/5c bzw. 4f/5f. Die Gemische 3c/4c/5c und 3f/4f/5f werden mehrfach aus MeCN umkristallisiert. Der unlösliche Rückstand enthält die N⁶-Isomere 3c, f. Aus dem Filtrat kristallisieren 4c/5c bzw. 4f/5f.

3-Chloro-N-(9H-purin-6-yl)benzamid (**3h**): Aus 2,03 g (15 mmol) **1**, 4,20 g (24 mmol) **2h**, 1,52 g (15 mmol) Et₃N und 80 ml DMF nach 7 d, 2,55 g (62%) farbloses Pulver. Schmp. 295–297°. IR: 3200*m*, 3160*m*, 3120*m*, 3100*m*, 3050*w*, 3000*w*, 2960*w* (br., NH, CH), 1680*s* (C=O), 1620*m*, 1590*m* (C=N, C=C). Anal. ber. für $C_{12}H_8CIN_5O$ (273,7): C 52,66, H 2,95, N 25,59; gef.: C 52,83, H 3,10, N 25,57.

3,5-Dinitro-N-(9H-purin-6-yl)benzamid (3i): Nach 2 d 22 h, 1,33 g (81%). Anal. gef.: C 43,86, H 2,13, N 29,57. Übrige Daten vgl. oben.

2-(9H-Purin-6-yl)benzisothiazol-3(2H)-on (**3k**): Nach 6 d, 1,18 g (88%) gelbes Pulver. Schmp. 262–263°. IR: 3420m, 3230m, 3100w, 3060w, 3000 (sh) (br., NH, CH), 1690s (C=O), 1600m, 1590 (sh) (C=N, C=C). Anal. ber. für C₁₂H₇N₅OS (269,3): C 53,53, H 2,62, N 26,01; gef.: C 53,55, H 2,66, N 26,03.

Isomerengemisch **3c/4c/5c**: Nach 3 h. *4-Nitro*-N-(*9*H-*purin-6-yl*)*benzamid* (**3c**): 0,50 g (35%). Anal. gef.: C 50,95, H 2,93, N 29,54. Übrige Daten vgl. oben.

*9-(4-Nitrobenzoyl)-9*H-*purin-6-amin und 7-(4-Nitrobenzoyl)-7*H-*purin-6-amin* (4c/5c): 0,37 g (26%) hellgelbes Pulver. Schmp. 320° (Zers.). IR: 3300*m*, 3160 (sh), 3100*m*, 3070 (sh) (br., NH, CH), 1695*s* (C=O), 1600*s* (C=N, C=C). Anal. ber. für C₁₂H₈N₆O₃ (284,2): C 50,71, H 2,84, N 29,57; gef.: C 50,71, H 2,75, N 29,35.

Isomerengemisch **3f/4f/5f**: Nach 7 d. 4-*Methyl*-N-(9H-*purin-6-yl)benzamid* (**3f**): 0,29 g (23%) farblose Kristalle. Schmp. 279–280°. IR: 3200s, 3170 (sh), 3120s, 2980m (br., NH, CH), 1680s (C=O), 1610 (sh), 1600m, 1580m (C=N, C=C). Anal. ber. für $C_{13}H_{11}N_5O$ (253,3): C 61,65, H 4,38, N 27,65; gef.: C 61,64, H 4,33, N 27,77.

9-(4-Methylbenzoyl)-9H-purin-6-amin und 7-(4-Methylbenzoyl)-7H-purin-6-amin (4f/5f): 0,48 g (38%) farbloses Pulver. Schmp. 200–201°. IR: 3440m, 3270w, 3100m, 3080 (sh) (br., NH, CH), 1695s (C=O), 1650s, 1635s, 1605m, 1595m (C=N, C=C). Anal. ber. für $C_{13}H_{11}N_5O$ (253,3): C 61,65, H 4,38, N 27,65; gef.: C 61,88, H 4,09, N 27,66.

*9-(4-Chlorobenzoyl)-9*H*-purin-6-amin und 7-(4-Chlorobenzoyl)-7*H*-purin-6-amin* (4d/5d): Nach 3 d, 0,89 g (62%) farblose Kristalle. Schmp. 309–310°. IR : 3300*m*, 3100*m*, 3080*m*, 3020*w* (br., NH, CH), 1690*s* (C=O), 1600*m*, 1585*m* (C=N, C=C). Anal. ber. für C₁₂H₈ClN₅O (273,7): C 52,66, H 2,95, N 25,59; gef. : C 52,41, H 3,17, N 25,51.

9-[(Biphenyl-4-yl)carbonyl]-9H-purin-6-amin und 7-[(Biphenyl-4-yl)carbonyl]-7H-purin-6-amin (4e/5e): Nach 2 d, 1,14 g (72%) farbloses Pulver. Schmp. 214–215°. IR: 3440s, 3270w, 3100s, 3020w (br., NH, CH), 1685s (C=O), 1650s, 1630s, 1600s, 1590s (C=N, C=C). Anal. ber. für C₁₈H₁₃N₅O (315,3): C 68,56, H 4,16, N 22,21; gef.: C 68,31, H 4,07, N 22,26.

9-[(Furan-2-yl)carbonyl]-9H-purin-6-amin und 7-[(Furan-2-yl)carbonyl]-7H-purin-6-amin (4l/5l): Aus 1,35 g (10 mmol) 1, 1,31 g (10 mmol) 2p, 5 ml Et₃N und 50 ml DMF nach 2 d 11 h, 1,41 g (47%) farbloses Pulver. Schmp. 188–189°. IR: 3340w, 3280m, 3160m, 3080m, 3000w (br., NH, CH), 1695s, 1680s (C=O), 1610m (C=N, C=C). Anal. ber. für C₁₀H₇N₅O₂ (299,2): C 52,40, H 3,08, N 30,56; gef.: C 52,30, H 3,29, N 30,41.

9-(2-Chlorobenzoyl)-9H-purin-6-amin (4g): Nach 20 h, 0,52 g (38%) gelbes Pulver. Schmp. 179–180°. 1R: 3420*m*, 3310*m*, 3250*w*, 3180*m*, 3120*w*, 3040 (sh) (br., NH, CH), 1690*m* (C=O), 1640*s*, 1580*s* (C=N, C=C). Anal. ber. für C₁₂H₈ClN₅O (273,7): C 52,66, H 2,95, N 25,59; gef.: C 52,77, H 3,14, N 25,61.

9-((E)-3-Phenylprop-2-enoyl)-9H-purin-6-amin (4j): Nach 3 d, 0,94 g (71%) gelbes Pulver. Schmp. 320° (Zers.). IR: 3390m, 3320m, 3250w, 3180m, 3110w, 3070w, 3020 (sh) (br., NH, CH), 1695s (C=O), 1650s, 1625s, 1590s (C=N, C=C). Anal. ber. für C₁₄H₁₁N₅O (265,3): C 63,39, H 4,18, N 26,40; gef.: C 63,26, H 4,07, N 26,57.

9-[(3-Chlorobenzo[b]thiophen-2-yl)carbonyl]-9H-purin-6-amin (4m): Nach 22 h, 0,86 g (52%) gelbes Pulver. Schmp. 244–245°. IR: 3320s, 3240w, 3170s, 3120s, 3020 (sh) (br., NH, CH), 1710s, 1690s, 1680s, 1655s, 1645s, 1590s (C=O, C=N, C=C). Anal. ber. für C₁₄H₈ClN₅OS (329,8): C 50,99, H 2,45, N 21,24; gef.: C 50,70, H 2,54, N 21,08.

9,9'-Terephthaloylbis[9H-purin-6-amin] (=9,9'-(Benzol-1,4-dicarbonyl)bis[9H-purin-6-amin]; **4p**): Nach 1 d 2 h, 0,64 g (32%) farbloses Pulver. Schmp. 357° (Zers.). IR: 3440 (sh), 3340 (sh), 3310s, 3160s, 3040 (sh) (br., NH, CH), 1700s, 1685s (C=O), 1640s, 1600s (C=N, C=C). Anal. ber. für $C_{18}H_{12}N_{10}O_2$ (400,4): C 54,00, H 3,02, N 34,99; gef.: C 53,74, H 2,88, N 34,78.

9,9'-Succinylbis[9H-purin-6-amin] (= 9,9'-(Butandioyl)bis[9H-purin-6-amin]; **4q**): Aus 1,35 g (10 mmol) **1**, 0,39 g (2,5 mmol) **2m** und 40 ml DMF nach 3 h, 0,84 g (95%) gelbes Pulver. Schmp. 257–258°. IR: 3440*m*, 3290*w*, 3100*m*, 2930*w* (br., NH, CH), 1730*s* (C=O), 1650*s*, 1640*s*, 1600*m* (C=N, C=C). Anal. ber. für $C_{14}H_{12}N_{10}O_2$ (352,3): C 47,73, H 3,43, N 39,76; gef.: C 47,58, H 3,61, N 39,92.

1606

LITERATURVERZEICHNIS

- [1] H. Woithe, Teil der geplanten Dissertation, Univ. Frankfurt/Main.
- [2] A. Kossel, Z. Physiol. Chem. 1888, 12, 241.
- [3] A. H. Schein, J. Med. Chem. 1962, 5, 302.
- [4] R.K. Robins, in 'Heterocyclic Compounds', Ed. R.C. Elderfield, J. Wiley, New York, 1967, Vol.8, S.365.
- [5] J. H. Lister, in 'The Chemistry of Heterocyclic Compounds', Eds. A. Weissberger und E. C. Taylor, J. Wiley, New York, 1971, Vol. 24, Part II (Ed. D.J. Brown), S. 323–330.
- [6] J.H. Martin, J.E. Fox, J.D. McChesney, Phytochemistry 1973, 12, 749.
- [7] S.E. Manoilov, N.N. Chamin, L.B. Dashkevich, G.I. Pustoshkin, A.G. Volokhonskii, Dokl. Akad. Nauk SSSR 1960, 131, 1174 (CA: 1960, 54, 21109 i).
- [8] S.E. Manoilov, N.N. Chamin, L.B. Dashkevich, A.G. Volokhonskii, G.I. Pustoshkin, Tr. Leningr. Khim.-Farmatsevt. Inst. 1961, 13, 49 (CA: 1963, 59, 3917 h).
- [9] I. Iwai, M. Asai, to Sankyo Co., Ltd., Japan. Patent 22,892, 1963 (CA: 1964, 60, 2964 g).
- [10] M. M. Baizer, J. R. Clark, M. Dub, A. Loter, J. Org. Chem. 1956, 21, 1276.
- [11] M. M. Baizer, to S. B. Penick & Co., Inc., U.S. Patent 2,956,998, 1960 (CA: 1961, 55, 7446 d).
- [12] S. M. Hecht, J. J. McDonald, Anal. Biochem. 1972, 47, 157.
- [13] R.B. Moffett, A. Robert, L.L. Skaletzky, J. Med. Chem. 1971, 14, 963.
- [14] K. Anzai, M. Matsui, Bull. Chem. Soc. Jpn. 1973, 46, 3228.
- [15] M. W. Bullock, J. J. Hand, E. L. R. Stokstad, J. Org. Chem. 1957, 22, 568.
- [16] S. Okumura, Japan. Patent 8526, 1959 (CA: 1960, 54, 6769 d).
- [17] H. v. Euler, H. Hasselquist, I. Limnell, Arkiv Kemi 1963, 21, 37.
- [18] J. U. Bliesener, H. Sauter, N. Goetz, J. Jung, K. Grossmann, to BASF AG, Ger. Offen. DE 3,409,272 (Cl. C07D473/34), 19. Sept. 1985, Appl. 14. März 1984 (CA: 1986, 104, 148 646 b).
- [19] J. Altman, D. Ben-Ishai, Bull. Res. Counc. Israel 1962, 11A, 4.
- [20] B.D. Mehrotra, P.C. Jain, N. Anand, Indian J. Chem. 1966, 4, 146.
- [21] S.P. Dutta, C. I. Hong, G. L. Tritsch, C. Cox, R. Parthasarthy, G. B. Chheda, J. Med. Chem. 1977, 20, 1598.
- [22] H. Woithe, Diplomarbeit, Univ. Frankfurt/Main, 1982.
- [23] L. B. Townsend, in 'Synthetic Procedures in Nucleic Acid Chemistry', Eds. W. W. Zorbach und R. S. Tipson, Wiley, New York, 1973, Vol. 2, S. 313–323.
- [24] J. Altman, Dissertation, Technion-Israel Institut of Technology, Haifa, Israel, 1962.
- [25] M.-T. Chenon, R.J. Pugmire, D. M. Grant, R. P. Panzica, L. B. Townsend, J. Am. Chem. Soc. 1975, 97, 4627.
- [26] C. A. Fyfe, in 'Solid State NMR for Chemists', C. F. C. Press, P. O. Box 1720, Guelph, Ontario, Canada, 1983.